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(1) The midplane field in an undu1ator is given approximately by 
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The orbit wiggles in the transverse direction x perpendicular to y and s, and 

is given by 

where 
d 

prime = Ts 

x' = 2;P cos (2~ t) - x~ cos (2~ ~) 
o 

Po = }- (rigidity, Bp = ~ p, of beam). 
o 

The deflection parameter K is defined by 

x' 
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- radiation angle - l/y 2~po 

where Y is the particle energy in rest energy, mc 2 , units. A device 
'" with K > 10 for which the radiation spectrum is more-or-1ess continuous is 

called a wiggler and that with K < 4 for which the spectrum is discrete is 

called an undu1ator. We shall refer to all of them as undu1ators. 

(2) The wavelength Ak of the forward kth harmonic radiation of the 

undu1ator is given by 
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The corresponding energy of the radiation is 
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2~~c 1.24 x 10 keV cm 

Ek = ----x:-- = ----,,-----
k Ak 

(2.48 x 10- 7 keV cm) 

(3) The spectral brilliance of the radiation, B, is given by 

B spectral flux (flux/BW) = ______ F __ ___ 
- source phase volume ~ 4~E E'E E' 

x x Y Y 

where BW means bandwidth. The spectral flux is given by 

where 
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For the source phase area in either phase plane (x or y) we can write 

where 

t 
focal depth 

term 

t t 
diffraction 

terms 

cr = 1€8 = rms particle beam width at midpoint of undulator 

crt = I€/S rms particle beam divergence at 

midpoint of undulator 

\ (€ = rms emittance of beam 

S = minimum amplitude function at midpoint of undulator) 

L = Nt = total length of undulator 

A = wavelength of radiation 

B. Approximate Magnetics for a Hybrid REC Undulator 

(7) 

If the width (along x) of the undulator is sufficiently large, the 

field distribution is approximately two-dimensional as shown in Fig. 1. The 

total magnetic flux emanating from each pole piece is roughly equal to that 

generated by one block of REC, but only a fraction of it crosses the midplane. 

This fraction looks as though it originates approximately from a magnetic pole q 

located at a distance a = (half-gap) + (half-pole thickness) = (g+t)/2 from the 

midplane. The field on the midplane produced by two rows of alternating poles 

with strengths iq and at distance ta from the midplane are easily derived to be 

B (s) = l6'Jl'q 
Y t 
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Figure 1. Field distribution in one cell of a hybrid REC 
undulator. 
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The last approximate expression results from the fact that the amplitude of 

the cos 2 2~s/t term in the denominator is generally much smaller than 1 and 

can be neglected. This then gives 

B t 
o 

8~g 

sinh 2~T 
= 8~q 

. h g+t 
s~n ~-r 

(8) 

The value of 9 depends on the material and mass of the REC magnet block. As 

an average conventional value, we take 

8~g '" 3 T cm 

Together with Egs. (1) and (8), this gives 

K = __ 2_._8--:-~ 
sinh $g+t 

t 

C. Optimization Considerations and Procedures 

(1) Radiation wavelength A 

In the following we shall concentrate only on the first harmonic 

radiation and snaIl drop the k=l subscript on all parameters. The first 

harmonic wavelength is given by Egs. (2) and (9) to be 

A = ...;.. [1 + __ 3~._92~] 
2-y L. • h2 g+t • 

s~n $--
t 

(9) 

(10) 

The pole piece thickness t has to be large enough so that the magnetic flux 

density in the pole piece does not exceed saturation. Generally, with available 

REC magnets, this is not a problem. Design convenience gives t - t/6; namely, 

that the REC magnet is about twice as thick as the pole piece. We shall assume 

this value for all following calculations. The gap g is generally adjustable 

from a minimum value upward. With a given beam energy (or y) and a desired 

radiation wavelength A at a prescribed minimum gap, Eg. (10) gives the necessary 

period length t. When the magnet gap is increased hence, the peak magnetic 

field Bo decreased, the deflection parameter K decreases and so does A. This is 

the simplest and most straightforward way to tune for different wavelengths (or 

energies) of the radiation from the undulator. 
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As an example, we consider a high energy and high brilliance 

undulator on a high energy storage ring. A realistic minimum gap is 

g = 1 cm. For particle beams of 6 GeV, 7 GeV and 8 GeV to get 20 keV first 

harmonic radiation (A = 6.2 x 10-9 cm) the required t values as given by 

Eq. (10) are listed in Table 1. 

Table 1 

Parameters of 20 keV First-Harmonic-Energy Tunable Undulators 

Period lengths t (cm) Radiation energy 
Beam energy for E = 20 keV E (keV) 

(GeV) at gmin = 1 cm at g = CD 

6.0 1.557 21. 97 
7.0 1.918 24.27 
8.0 2.249 27.03 

Also given in the last column are the radiation energies when the gap is 

opened to infinity, hence K is reduced to zero. These then give the ranges of 

radiation energy that can theoretically be reached by tuning the magnet 

gap g. One notes, however, that at K = 0, the radiation flux is zero. It is 

clear that g = CD is unrealistic. Nevertheless, Table 1 shows that the tuning 

range is greater for higher beam energy. 

(2) Radiation spectral flux 

The spectral flux for the first harmonic radiation is given by Eqs. 

(5) and (6) to be proportional to 

where 

Q(K) = 4u[J
o

(u) - J
l
(u)]2 

2 
u u 2 = 4u(1 - 2 - ~) 

u = ----=-
4 + 2K2 

( ll) 
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and where the second expression of Q(K) is a good approximation for small 

values of u, hence for all values of K, since u goes up to only 0.5 when K 

goes to infinity. Both the exact and the approximate expressions are plotted 

in Fig. 2 which shows the excellence of the approximation, especially for 

values of K < 1. 

The graph also shows that Q is a rather steep function of K for 

K < 1. When one aims for the highest possible radiation energy (smallest A) 

with a given beam energy (or y) by reducing g and t to the minimum, the range 

of radiation energy tunable by varying g becomes very small. With a small 

initial value of K, which falls on the very steep part of the Q curve, the 

small reduction of K obtained by increasing g (reducing Bo) raises E only 

slightly, but reduces Q and hence the spectral brilliance rather 

precipitously. 

In practice, the principal parameters determining the design of a 

high energy tunable undulator are the minimum gap go and the maximum desired 

radiation energy El • At the minimum gap, the radiation energy Eo is given by 

2 
Eo = (2.48 x 10-

7 
keY cm) t-(l - 2uo ) 

and the spectral brilliance is proportional to 

where Uo is expressed in terms of g(and t) by 

= 

K 2 -1 
2uo = 1 - (1 + -I-) 

[1 + 

(12) 

(13) 

(14) 
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The maximum radiation energy El is obtained at the widest gap gl when the 

reduced brilliance is at the minimum allowable value. The minimum brilliance 

is proportional to 

2 u
l 

u
l 

2 
Q = 4u (1 - - - -) 1 1 2 4 

where now ul is expressed in terms of El (and t) by 

K 2 -1 
2u l = 1 - (1 + -j-) 

1 -
(2.48 x 10-7 keY cm)y2 

(15) 

(16 ) 

It remains now to determine the allowed reduction in Q at the top energy. If 

Ql must, at the minimum, be a fraction f of Qo' the equation 

containing only t as variable will yield the period length required. In 

Table 2 we give the parameters so derived of two adjoining high energy 

undulators assuming an allowable brilliance reduction factor f = 1/2 and for 

the three beam energies studied before. One sees that the radiation energy 

range that can be covered by the two adjoining undulators increases from 

2.40 keY at 6 GeV to 5.64 keY at 7 GeV to 9.45 keY at 8 GeV showing that for 

good tuning range at the maximum desired radiation energy, one should use 

somewhat higher-than-minimum necessary beam energy so that the period length t 

does not have to be pushed to the absolute minimum. 
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Table 2 

Parameters of sets of two adjoining tunable undu1ators with 20 keV maximum 
radiation energy for three different beam energies 

Undu1ator I Undu1ator II 

Beam energy Open gap Min. gap Open gap Min. gap 

6 GeV 
Hcm) 1. 623 1. 704 
g(cm) 1.199 1.000 1.214 1.000 
E(keV) 20.00 18.87 18.87 17.60 
Q 0.0987 0.1975 0.1154 0.2307 

7 GeV 
t(cm) 2.088 2.332 
g(cm) 1.292 1.000 1. 350 1.000 
E(keV) 20.00 17.40 17.40 14.36 
Q 0.1948 0.3896 0.2401 0.4801 

8 GeV 
t(cm) 2.579 3.154 
g(cm) 1.417 1.000 1. 593 1.000 
E(keV) 20.00 15.58 15.58 10.55 
Q 0.2795 0.5589 0.3459 0.69l8 

(All g/t values are within the "Halbach limit" of 0.7.) 

(3) Source phase volume 

To maximize the spectral brilliance, we want to minimize the source 

phase volume ~ given in Eqs. (4) and (7). This can be written as 

2 2 ~,2 L2 XL 1/2 ,2 A 1/2 
= 4~ (ax + Vx ~ + ~) (ax + L) 

2 2 L2 XL 1/2 ,2 A 1/2 
x(a + a' -- +~) (a +-L) 

Y y 4 ~ Y 

(18) 
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with Gx and Gy defined by 

(for either x or y) (19) 

The term S/L exhibits the effect of the focal depth. To minimize the beam 

spot (or G) over the whole length of the undulator S should be approximately 

equal to L. This is evident from the fact that S/L appears in the expression 

for G both right-side-up and in the inverse, and can further be substantiated 

by direct calculation. 

G . ml.n 

Thus, we set S = L and obtain 

1/2 
= ~[(5 + ~)(l + ~)] (20) 

A 
The parameter € gives the contribution from diffraction. This 

expression for Gmin shows that for a given wavelength A the beam emittance e 

should not be much smaller than A, otherwise the source size will be 

excessively enlarged by diffraction. In practice, for nearly all cases of 

interest Ale < 1. Thus, Gmin lies somewhere in the narrow range 

of /5/2 = 1.1 (at Ale = 0) to 13 = 1.7 (at Ale = 1). If we set approximately 

and 
1 

Ex = ~o 

e -~ y l+k 0 
(21) 

where eo is the natural emittance and k is the horizontal-vertical coupling 

fraction of the beam, Eq. (18) gives 

(22) 
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which together with Eqs. (4) and (5) gives, finally, for the spectral 

brilliance 

(23) 

As an example, we take the 20 keY undulator designed for the Argonne 

6 GeV storage ring with the following parameters: 

Beam energy = 6 GeV 

£0 = 7.8 x 10- 9 m-rad = 7.8 x 10-3 mm-mrad 

k = 0.1 

I = 100 rnA 0.1 A 

L = 5 m (N = 500 emIt) 

and with t and Q as given in Table 2. The undulator design and performance 

parameters derived from the above considerations and formulas are: 

Undulator I 

t = 1.623 em 

N = 308 

B 9.868 x 10 18 Q 

g(cm) 

E(keV) 

Q 

B(photon/sec/mBW/mm2/mrad2 ) 

Open gae 

1.199 

20.00 

0.0987 

0.974 x 

Minimum ~ap 

1.000 

18.87 

0.1975 

10 18 1. 949 x 10 18 



Undulator II 

R. = 1. 704 cm 

N = 293 

B = 9.388 x 10 18 Q 

g(cm) 

E(keV) 

Q 

B(photon/sec/mBW/mm2/mrad 2) 

13 

Open ~al2 Minimum gap 

1.214 1.000 

18.87 17.60 

0.1154 0.2308 

1. 083 x 10 18 2.166 x 10 18 

We see that even at the open gap settings, the halved brilliance is still 

about 1 x 10 18 photon/sec/mBW/mm2/mrad 2• 


